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ABSTRACT

In this thesis, four strategies for a fast and accurate extraction of the
spinal curve from MR records using CNNs are presented and evalu-
ated. Furthermore, the extracted spines from a dataset of more than
3000 records (SHIP dataset) are tested statistically on how certain
biological features like age or weight in�uence the curvature. Addi-
tionally, ranges of Cobb angles for healthy spines are determined and
a visual tool for a fast classi�cation of the spine is proposed.
It turns out that the best strategy results in a maximal mean er-

ror of only 3.3mm and the healthy Cobb angles range from 40◦ to
50◦ and -7◦ to 9◦ in the sagittal and coronal view, respectively. The
statistical tests interestingly showed, among other insights, that it is
rather unlikely/unnatural to have a straight but rather slightly bent
spine in the coronal view, i.e. mild scoliosis.
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1I N TRODUCT ION

In this chapter, a general introduction to the subject of this thesis
will be given. Therefore, the need of this work is motivated in the �rst
section of this chapter. Thereafter, the goal for the algorithm that will
be proposed in a later chapter is delimited.

1.1 motivation

The vertebral column of human beings (and vertebrates in general) is
the part of the body that primarily supports the statics of the whole
body. It consists of 33 osseous vertebral bodies and intervertebral
discs that lie between most of these vertebrae. The whole spine can
be divided into the cervical, thoracic and lumbar region followed by
the sacrum and the coccyx from top to bottom. The spine of a healthy
subject should, in a coronal view, be straight. In a sagittal view, a
healthy spine is not straight but rather curved to better stabilize the
whole body. This curvature is not arbitrary but dorsal concave (called
’lordotic curve’) in the cervix, dorsal convex (called ’kyphotic curve’)
in the thorax and again lordotic in the lumbar region. The curvature
in the sacral and coccyx region can be described as kyphotic[6].
For thousands of years, spinal deformities have impaired the life

of people living with such a disease[48]. Due to that fact, it is un-
derstandable that doctors want to treat these malformations as fast
and as good as possible. Once people have reached adulthood, the
spine will hardly change any more which means that it is unlikely to
develop a spinal deformity in the years of adulthood but also that a
malformation untreated during adolescence can hardly be cured as
an adult[5].
This means that it is important for doctors to know when to start

a treatment, i.e. the borders between classifying a spine as healthy
and unhealthy must be known.
There are several di�erent types of spinal deformity that can occur.

One of these, and probably the most common malformation[22], is
called scoliosis. The spine of people diagnosed with scoliosis most
often has a lateral shape like the letters ’C’ or ’S’ (possibly mirrored).
If scoliosis occurs during adolescence and without an obvious rea-
son it is called adolescent idiopathic scoliosis (AIS). With 2% - 3%
of children between 10 and 18 years a�ected by this malformation
(especially girls)[3], AIS is a very prevalent. Once it reaches a cer-
tain degree, the patients can su�er from pain in the back, the risk
of developing shortness of breath is increased and the self-esteem
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can lower drastically[2]. Hence, a treatment with a brace or, in severe
cases, surgery with spinal implants that hold the spine in a straight
position is necessary.
Another type of spinal malformation is called kyphosis. In contrast

to scoliosis, the curve of the spine is abnormally kyphotically convex,
i.e. sagittally displaced outwards, which can occur in cervical, tho-
racic and sacral regions[41]. A mild kyphosis can only be diagnosed
very di�cultly since a healthy spine always has a kyphotic curvature
which can also be changed very easily by not standing, sitting or lying
completely straight[15]. Like with scoliosis, a high degree can cause
pain, breathing di�culties and even shortened life spans. It is pos-
sible to cure patients with kyphosis by using a body brace, physical
therapy or surgery which is very similar to the treatment of scoliosis.
The last spinal deformity presented in this chapter is termed lordo-

sis. Such like kyphosis, this malformation is a sagittal displacement
as well, but in this case, it describes the abnormally lordotic concave
curvature of the spine and can occur in thoracic and sacral regions.
Like scoliosis and kyphosis, lordosis can lead to back pain as well.
Another symptom is spinal disc herniation which means that inter-
vertebral discs have been damaged. Di�erent to scoliosis and kypho-
sis, cases of lordosis usually do not occur due to inherent physical
defects but rather because of habitual poor posture[28]. This is why
it is usually treated with braces or stretches and not by surgery.
To both terms kyphosis and lordosis, the descriptions hyper- or

hypo- can be attached to explain a rather strong convexity/concav-
ity or to be rather straight, respectively. This is not necessary for sco-
liosis since a lateral curvature of the spine is not natural and thus
would always be described as unhealthy.
Since these malformations are very common and need to be cured,

there need to be methods to measure and classify the strength of
these presented curvatures. The most common process is the clas-
si�cation after the determination of the Cobb angle[9], which was
introduced to measure scoliosis but can also be applied to lordosis
and kyphosis. In case of scoliosis, one needs a coronal view of the
spine where all vertebral bodies are observable. The �rst step is to
determine the neutral vertebrae. These are the vertebral bodies at
the in�ection points of the lateral curvature. The next step is to �nd
the tangent at the superior endplate of the upper neutral vertebra
and the tangent at the inferior endplate of the lower neutral verte-
bra, respectively. The angle between these two tangents is de�ned as
the Cobb angle. If this value is 30° or less, the scoliosis is classi�ed
as mild and up to 45° it is moderate. Everything above is de�ned as
severe scoliosis[4].
Similarly, the Cobb angle can also be determined in sagittal views

of the spine to classify cases of lordosis or kyphosis. As stated be-
fore, a healthy spine is not straight when being viewed sagittally and
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so the classi�cation ranges of Cobb angles for scoliosis cannot be
applied here. Rather, a Cobb angle between 20° and 45° from the
�rst to the twelfth vertebra seems to be normal regarding kypho-
sis although the values change with age and gender[15]. This means,
patients with Cobb angles greater than 45° are classi�ed as hyper-
kyphotic and smaller than 20° as hypokyphotic.
It is even harder to diagnose lordosis or to specify a range of nor-

mal lordotic angles since it is not clear where to measure the angles.
Some studies mention ranges from 20° to 60° or 40° to 60° and even
up to 83.5°[43].
In cases of scoliosis, the Cobb angle alone often is not enough to

precisely classify the disease since it does not tell anything about
the direction or the general shape. This is why other methods have
evolved that use the Cobb angle but also other information.
The �rst method was proposed by King et al.[21] and provides �ve

di�erent types that scoliosis can be classi�ed as. Unfortunately, it is
not possible to quantify the degree of these typeswith King’smethod.
However, Lenke et al. [24] presented another method for not only de-
scribing the overall shape of the scoliosis but also providing some
modi�ers based on the Cobb angles. Yet another classi�cation sys-
tem was introduced by Rigo et al. [37] and classi�es the spine in �ve
di�erent types, such like King et al. did but one needs to consider
clinical data, e.g. ’pelvis translated to the concave thoracic side’, as
well as radiological criteria, e.g. ’positive L5-4 counter-tilting’.
All in all, there exist some methods to coarsely determine spinal

malformations but they are neither tailored to the patient, i.e. ex-
cept for Rigo et al., no method uses additional information next to
the shape of the spine (like age, sex, weight, ...), nor allow to pre-
cisely classify the spine, e.g. by de�ning exact decision boundaries
for healthy and unhealthy. Of course, this needs a big dataset and a
fast possibility to analyze the data, which was not possible computa-
tionally until now.

1.2 goal

As one can see from the previous section, there are several di�er-
ent methods for classifying the shape of the spine, which overlap
in some aspects but are rather di�erent in other aspects (even for
describing the same shape).
Furthermore, the ranges of Cobb angles, for classifying scoliosis

as well as for classifying kyphosis and lordosis, seem to be chosen
arbitrarily and only coarsely re�ect the certain degrees of severity of
a possible malformation. Finding more precise ranges and allowing
for a statistically more accurate classi�cation requires the analysis
of a big representative dataset which is almost impossible with the
described methods since it would be extremely time consuming.
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On the other hand, the analysis of such a data set would not only
permit to determine the ranges for the entirety of subjects but also
to �lter for certain properties like age or weight, if necessary. At last,
this would allow for a uniform classi�cation system.
For these reasons, this thesis aims to:

1. extract the curve of the spine frommedical images in a fast and
yet su�ciently accurate way (i.e. being able to extract hundreds
or thousands of spinal curves in a short time),

2. �nd a method to map the extracted spinal curves to a common
system to allow a facilitated comparison,

3. carry out statistical tests on the spines of a big dataset to �nd
di�erences between groups of subjects with certain properties
(e.g. young vs. old subjects),

4. determine ranges of Cobb angles to statistically and meaning-
fully distinguish between healthy and abnormal spine curva-
tures,

5. provide a visualization of the spine curvature to identify the
region of the spine where critical values of Cobb angles are ex-
ceeded at a glance.

1.3 structure of this work

This chapter gave a coarse insight into the topic and the goals of this
thesis.
Chapter 2 presents currently available methods for extracting

spines from medical images and to classify the di�erent diseases of
the spine automatically.
In Chapter 3, the method of this thesis for extracting the center-

line of the spine will be explained. Therefore, four strategies are pre-
sented that are similar but can lead to di�erent outcomes neverthe-
less.
For this reason, Chapter 4 contains tests of all of the presented

methods and their substeps on a real dataset. Based on the results,
the best, i.e. most accurate and visually pleasing, method is chosen.
In Chapter 5, hypotheses on the spinal curves are stated and statis-

tical tests are carried out on the extracted spines by the best method
chosen in the previous chapter and on a big dataset of more than
3000 subjects to verify the validity of the hypotheses. Furthermore,
a method for distinguishing between healthy and abnormal spine
curvatures is proposed.
Finally, Chapter 6 summarizes the results of the previous chapters

and suggests some future work that would be interesting for both
doctors and computer scientists.
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Up until now, there have been made a lot of attempts to tackle prob-
lems in medical image analysis to classify many di�erent diseases
referring to the spine. This chapter gives an overview over certain
methods for solving these problems.

2.1 spine detection and extraction

For computer-aided diagnosis, it is necessary to examine the spine
in some cases. To do so, one needs to detect, localize or segment the
vertebral bodies or the spine as a whole.
One attempt was made by Kelm et al.[20]. They propose an algo-

rithm that can work on both CT or Magnetic Resonance (MR) records.
It is a combination of Marginal Space Learning and a generative
anatomical network, and consists of four steps: rough spine localiza-
tion, disk selection (by iterated Marginal Space Learning), disk selec-
tion & labeling and structure segmentation. Using these steps, they
cannot only estimate the location, orientation and size of each ver-
tebral body but also carry out a segmentation using this information.
The method obtains a sensitivity of ≥98% with a processing time of
11.5 s on a dual-core 2.2 GHz Laptop.
Zukić et al.[55] presented a method for the detection and seg-

mentation of vertebral bodies with minimal user intervention in MR
records. The �rst step of thismethod is the detection of vertebral cen-
ters using the Viola-Jones algorithm (which needs to be trained). To
eliminate outliers in the set of these initial detections, a third-order
spline is approximated using the center positions and detections far-
thest away from this spine are removed. After this step, it is possible
for the user to modify the set of center points. The next step is the
segmentation of the vertebrae. Therefore, a probability map for the
boundaries of the bodies is calculated using several di�erent fea-
tures like the results of an edge detection, a distance transform or a
morphological closing. For every vertebral body, an iterative in�ation
algorithm using balloon forces is applied to �nally segment them. Af-
terwards, these segmentations and/or the centers can be used to
diagnose diseases like scoliosis, spondylolisthesis, or vertebral frac-
ture. With a detection rate of >92% and a Dice coe�cient of >79%,
this method is capable of segmenting the spine in around 70 s for a
whole dataset.
Chen et al.[7] take another approach of localizing and identifying

vertebrae. Their method is a combination of a coarse detection us-
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Figure 2.1: Deep Supervision

ing random forests for �nding vertebra candidates and then feeding
these into a Convolutional Neural Network (CNN) to predict the cen-
troids of the vertebral bodies. As a modi�cation to the standard CNN,
they introduce the J-CNN which also takes pairwise conditional de-
pendencies of neighboring vertebrae into account. Since these pre-
dictions could have o�sets due to a low resolution of the vertical axis
of their data, Chen et al. trained a shape regression model after the J-
CNN to re�ne the coordinates of the predicted vertebrae. Themethod
was trained and tested on 302 annotated CT scans and improved the
standard CNN identi�cation rate by around 10%, achieving 84% for
the whole spine and even 92% for the cervical region.
Another interesting attempt was made by Yang et al.[51] for ver-

tebra labeling using encoder-decoder networks. This method also
consists of several steps. The �rst one initializes the vertebra loca-
tions using a so-called deep image-to-image network similar to a U-
Net[40] but extended by deep supervision (see Fig. 2.1), i.e. not only
the �nal output but also the outputs of the intermediate layers are
supervised and trained. The output of this network is a probability
map of vertebra centers which are then iteratively evolved usingmes-
sage passing themes and the mutual relation of the centroids. The
last step is a re�ning step like in [7] but using sparsity regularization.
To their knowledge, they were the �rst ones who tested on a dataset
of more than 1000 samples and achieved an identi�cation rate of
90% for the whole spine.
A method that is also based on neural networks was proposed by

Wu et al.[50]. The algorithm works on spinal X-ray records and out-
puts four landmarks for each vertebral body depicted in the record.
In its essence, this method is a regular CNN with a fully connected
layer before the output layer but in addition also includes the newly
presented BoostLayer after the convolutional layers. This new layer
enhances the feature space by removing outliers and thus minimizes
the intra-class variance. Wu et al. tested this method on 481 spinal
X-ray images withmanually extracted landmarks for training and test-
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ing. These landmarks have been normalized to be in the range [0, 1]
with (0.5, 0.5) being the center of the image. The method results in a
mean squared error of only 0.0046 pixels compared to 0.018 pixels
using the regular CNN without the BoostLayer.
Yao et al.[52] presented another interesting method to extract

and partition the spinal column from CT records. It consists of �ve
steps: initial spine segmentation (a thresholding at 200HU followed
by a connected component analysis retaining only the largest com-
ponent), spinal canal extraction (by applying the watershed algo-
rithm on every axial slice followed by a merging step and a directed
graph search along the transverse axis), �tting of a four-part verte-
bral model (on every 2D slice by a maximummodel-to-image match),
Curved Planar Reformation (CPR) (to provide clear views of the ver-
tebral separation) and spinal column partition (at the valleys of the
intensity pro�le along the spinal column). Out of the 71 tested CT
scans, only two cases had a missed partition.
The last approach described in this section consists of a spine

detection followed by a classi�cation and was done by Duong et
al.[13] who try to classify spinal deformities using fuzzy clustering.
They therefore create a 3D spine reconstruction in the �rst step using
an automatic algorithm as described by Delorme et al.[10]. Next, six
points per vertebra are manually extracted. As the authors state, this
step can be automated by elastically registering a reference model
of a vertebral body onto each of the vertebrae to be identi�ed. Af-
ter this step, the so de�ned features are compressed using a wavelet
decomposition resulting in only 20 wavelet coe�cients to describe
the shape of the spine curve. These remaining features are used for
a fuzzy clustering of which the output can be used for a classi�ca-
tion. Duong et al. tested the proposed algorithm on patients with
diagnosed AIS between 10 and 18 years and a measured Cobb angle
greater than 40° which resulted in a maximal Rand index of 1.00 for
�ve di�erent classes from the fuzzy clustering, correctly separating
all 409 tested samples.

2.2 scoliosis classification

Considering the spine, one special disease is the abnormal deforma-
tion in the coronal planewhich is known as (idiopathic) scoliosis. This
can lead to pain in the back, increase the risk of developing shortness
of breath and in many cases lowers the self-image[2]. For these rea-
sons, it is necessary to be able to measure the severity of scoliosis
and to classify these patients correctly.
The �rst method proposed in this section is by Thong et al.[47] and

tries to classify spines of scoliosis patients. They therefore acquire
biplanar X-ray scans which are used to reconstruct the spine by a
semi-supervised algorithm that extracts 17 landmarks resulting in a
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Figure 2.2: Fuzzy Hough Cobb Measurement a ROI selection b denoised ROIs
c edge detection d edge detection without denoising

total of 867 features. These are fed into an encoder-decoder (autoen-
coder) neural network which leads to a reduction of features to a
number of only 50 per spine. These low-dimensional codes are used
for a K-Means++ clustering with �ve cluster centers to minimize the
validity ratio and obtaining a statistical signi�cance with α = 0.05.
To automatically determine the Cobb angle from radiographic im-

ages, the method of Sardjono et al.[42] can be used. They use a de-
formable model, i.e. a modi�ed CPM, to estimate the outline of the
spine. The analogy to this model is an electric �eld with moving par-
ticles inside. The initial particle positions can be set manually or au-
tomatically and then move towards the left and right edges of the
vertebrae by simulating the �eld. The Cobb angles can then easily be
determined by �nding the most extreme angles between the parti-
cles. Tests show that smoothing the edges de�ned by the particles
using piece-wise linear line segments, splines or polynomials and a
bias correction improve the performance and result in lower error
and less time consumption (1min to 2min vs. 10min to 15min) than
manually determining the Cobb angle.
Another method for determining the Cobb angle on radiographs

was proposed by Zhang et al.[53]. As the �rst step, the image was
preprocessed yielding cropped and rescaled images with the same
height depicting the spinal area from C7 to sacrum. Subsequently,
ROIs were manually extracted around the most tilted end-vertebrae.
These patches were then denoised by anisotropic di�usion followed
by an application of the Canny operator to detect the edges (see Fig.
2.2). Using this edge map, the fuzzy Hough transform was applied to
extract the main direction by �nding and �ltering the peaks in the
transformed patch. From these main directions the Cobb angle can
easily be determined. To summarize this method, the mean absolute
error of the results and the ground truths created by experts di�ered
by at most 5°.
In another article, Zhang et al.[54] estimate the Cobb angle in X-ray

records using a deep neural network. Like in the method proposed
beforehand, the �rst step is a cropping and rescaling of the image but
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now depicting the area from T1 to L5. 100 patches were extracted and
downsampled for each shown vertebra. Those patches are the input
for a DNN consisting of three hidden layers. A non-linear activation
function, i.e. the hyperbolic tangent function, was only applied to the
second and third hidden layer. This network was then trained to learn
the slope of the vertebrae. To �nally calculate the Cobb angle, the
vertebrae with the largest predicted slope values were determined
and their absolute values were summed up. All in all, this method
produces results that di�er from the true values, determined by ex-
perts, by only 5° in theirmean absolute di�erence (like in themethod
before). Nevertheless, the user needs to specify the patches around
the vertebrae that can then be fed into the DNN for this method as
well.
Similar to Zhang et al.[53], Anitha and Prabhu[1] also proposed a

method to quantify the spinal curvature using the Hough transform.
At �rst, the radiograph is preprocessed by applying anisotropic �lter-
ing to highlight the edges. After that, the image is processed by a gra-
dient vector �ow snake (active contour) algorithm. To reduce human
error, the initialization for this algorithm is determined automatically.
To only retain the important edges in this segmentation, a morpho-
logical operator is applied. Finally, the Hough transform is used to
determine the objective measurements. Unfortunately, Anitha and
Prabhu did not provide the deviations of their method from a ground
truth since their goal was to reduce the inter-observer variance.
A method for automatically measuring the axial vertebral rotation

was proposed by Forsberg et al.[16]. They propose a four step al-
gorithm that works on CT images. These steps are the extraction
of the spinal canal centerline (using a circular Hough transform to
�nd a �tting circle for the spinal canal axial-slice-wise), disc detec-
tion (by examining the intensity pro�le along the extracted center-
line shifted towards the anterior), vertebra centerpoint estimation
(by exploiting the symmetry of vertebral bodies) and vertebra rota-
tion estimation (using the tangent of the curve running through the
centerpoints). With a complete processing time of around 12 s per CT
record, this method can achieve an accuracy on the same level as the
inter-observer variance.
Finally, Langensiepen et al.[23] published a systematic review

about methods for determining the Cobb angle automatically. After
electronic searches, they found 2915 articles containing keywords
like ’Cobb angle’, ’computer-assisted’ or ’X ray’. These were �ltered
drastically, yielding only 11 remaining articles in the end of the se-
lection process. Categories were found for each of these articles to
be able to classify the di�erent methods. As a result, the following
classes were identi�ed: ’Digital-Computer assisted’ (using 2, 4 or 6
landmarks or a horizontal image), ’Automatic’ (using an active shape
model model or the fuzzy Hough transform) and ’Smartphone’ (using
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Figure 2.3: Rasterstereography a back surface (top) asymmetry function
(bottom) b symmetry line in lateral view (left) mean (H) and Gaus-
sian (K) curvature (right)

the built-in accelerometer to determine the angle). As Langensiepen
et al. found out, none of the methods in the articles that were classi-
�ed were tested on reliability and agreement and were not compared
to a reference test.

2.3 lordosis and kyphosis

Not only is the lateral deviation of the spine unhealthy but also an
abnormally excessive kyphotic or lordotic curvature of the spine. Al-
though these types of abnormal curvature can lead to pain and other
unpleasant e�ects as well, only few articles addressing these non-
scoliotic abnormal spine curvatures have been proposed to date.
One of these methods was proposed by Reyes et al.[36] and is

based on aligned RGB data and depthmaps. Using a Microsoft Kinect,
an image and a depth map of the patient’s back are taken as the �rst
step. These are preprocessed by applying noise removal and surface
reconstruction on the depth map. Afterwards, the user can choose
between a static posture analysis (SPA), a spine curvature analysis
(SCA), a range of movement analysis (RMA) and a gesture recognition.
The SPA computes angles and distances of 3D keypoints correspond-
ing to dermal markers on the skin of the patient that were placed
by a therapist. More interestingly, the SCA is capable of obtaining an-
thropometric kyphosis and lordosis. Therefore, virtual markers can
be placed along the spine that are then used to generate a 3D curve
using linear interpolation. Using this curve, the values of the kypho-
sis or lordosis curvature, respectively, can be approximated. Finally,
the RMA and gesture recognition are aimed to assist in diagnoses
and physical rehabilitation treatments.
A method that is also based on 3D points was proposed by Drerup

and Hierholzer[12] and is able to automatically measure anatomical
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landmarks on the back surface. At �rst, a model of the back of the pa-
tient is created by rasterstereography. After that, the symmetry line,
which generalizes the medial sagittal pro�le to divide the back sur-
face into a left and right part of minimal asymmetry, is extracted.
This line can serve to create a reference system of the back and in-
versely objectively de�ne a body-�xed coordinate system. Based on
the symmetry line, many landmarks can easily be determined. Since
all landmarks on one side of the symmetry line have an equivalent
point on the other side, a pro�le of the asymmetry and a map of
Gaussian curvature can be determined. This makes it easy for the
user to �nd out the locations of deformations, e.g. caused by spine
malformations. In tests, among others on patients diagnosed with
lordosis and kyphosis (see Fig. 2.3 b), Drerup and Hierholzer found
out that this method achieves a high accuracy and enables further
measurements like the height variations of the intervertebral discs.
For treatment purposes, it is necessary to compare pre- and post-

operative records of the patients for spinal malformation correction.
This is why Newton et al.[32] proposed a method on biplanar radio-
graphs to �nd a common reference system that they call the ’three-
dimensional sagittal plane’ which is able to subtract out the lateral
curvature and thus keeping only the curve in the sagittal plane. This
is necessary because the correction of a scoliosis can distort the ra-
diographs in a way that the kyphosis or lordosis angles do not match
any more. Newton et al. also found out that the preoperative loss of
kyphosis in AIS is often underestimated because AIS inherently pro-
duces changes in the axial plane rotation.
Parvaresh et al.[33] try to predict the 3D thoracic kyphosis using

2D radiographs. They use the method of Newton et al. to compute
their ground truth. To create a prediction formula for the estimated
3D T5-T12 kyphosis, biplanar radiographs as well as additional infor-
mation like curve direction, apex level, Nash-Moe Grade and more
are used. This formula is the result of stepwise multivariate regres-
sion of all observed variables and achieves a mean absolute error of
approximately 5°±4°. During the creation of the formula, Parvaresh
et al. also computed the Pearson correlation of all observed vari-
ables with the ground truth. Interestingly, only the 2D T5-T12 kyphosis
was positively correlated. Almost all other variables were negatively
correlated and only some were not correlated at all. Anyway, this
formula was created for patients with AIS and right major thoracic
curves which means it cannot be used for all patients.
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Figure 3.1: Sagittal (xy plane) slice and coronal (zy plane) slice of a record
from the datasets.

In this chapter, the main methods for achieving the goal of this
thesis are described.
The most important step is to extract the spine. For this purpose,

many algorithms have been proposed (see Chapter 2) but all of them
were either too complex (using many steps resulting in a long run-
time per record) or needed further (pre-)processing (like �nding re-
gions of interest before or extracting positions from segmentations
after running the algorithm). Even if many of these methods would
probably have resulted in very accurate estimations of the spine,
there are much simpler and faster ways to get estimations that are
almost as accurate as the results of the previously mentioned algo-
rithms.
The main objective is to obtain a comparable outcome of the

method depicting the spines in a common reference system, called
’normalized spines’ or ’norm spines’, where MR records are the input
of the algorithm. For this purpose, three datasets are available (see
Section 4.1). One of these also contains the center points of the verte-
bral bodies from C1 to S1. Since these are given, a supervised learning
method seems to be suited for the problem. One of these, and prob-
ably the most promising method as it was often applied to similar
(medical) image processing problems already, is training an arti�cial
neural network or, in this case, CNNs[27].
There aremany possibilities to retrieve the spine from anMR record

using CNNs. In this chapter, four of these are proposed that seem to
be appropriate for the problem. Later, they are evaluated in Chapter
4 and the best performing one will be used for the statistical tests in
Chapter 5.
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Figure 3.2: Outline of Strategy 1. Blue: outputs after the di�erent steps. Or-
ange: substeps. Circular icon: trainable (convolutional) neural
network.

For this strategy, the �rst step is training a neural network that
directly extracts the center points of the vertebral bodies. This seems
to be straightforward yet there are some problems:

1. It is necessary for the neural network to always have the same
number of output nodes. Unfortunately, the human spine does
not always consist of the same number of vertebral bodies from
C1 to S1 (generally 24 but in some cases more or less).

2. One could solve this by not only predicting the positions but
also a con�dence that shows how certain it is for some vertebra
to exist. One could choose a high number of centers to be pre-
dicted (preferably as high as the maximal number of vertebrae
that can ever be found) and let the network decide how many
vertebrae it thinks there are in the input record. Anyway, this
would presumably not be very robust since it adds one more
degree of freedom per vertebra prediction and the order of the
vertebrae in the predicted output can be variable.

3. (Fully) convolutional neural networks are known for not su�-
ciently perform regression tasks like this one, even if fully con-
nected layers are put behind the convolutional layers[14], but
rather to do classi�cations (or segmentations).

For these reasons, the regression problem is mapped to a classi�ca-
tion/segmentation problem in the following way: The output of the
network will not be the coordinates of the center points of the ver-
tebrae but a matrix with the same size as the input with ones at the
positions of a vertebra center and zeros elsewhere. Since the verte-
bra centers are distributed very sparsely compared to the rest of the
elements of the matrix, it would be almost impossible for a neural
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Figure 3.3: Exemplary transformation of three spines (left) into the refer-
ence system (right). Notice that all norm spines have the same
start and end point in the reference system.

Figure 3.4: Z-Projections of midsagittal slice of intermediate outputs of
Strategy 1. F.l.t.r.: center map, center points, reference center
points, norm spine

network to learn these points. That is why a Gaussian �lter with a cer-
tain kernel size is applied to the so-created matrix. This causes val-
ues around the center points to get a value unequal to zero as well,
which can be seen as a kind of probability density function. Never-
theless, the smoothing by applying the Gaussian kernel causes the
values at the center points to not being one any more. Since the task
is still a kind of segmentation, these values should be one anyway,
which is why the matrix is normalized by dividing by its maximum,
such that the minimal value stays at zero but the maximal value is
mapped to one and all values in between are scaled properly.
After training the network to create the described outputs, which

will be called ’center maps’ from now, it is still necessary to extract
the coordinates of the center points. Assuming a perfect center map,
i.e. a generatedmap for training the network, it should be easy to �nd
the searched points by using a simple maximum �nder. Therefore, a
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sliding window approach can be used. The window size should be
small enough to contain only one maximum, i.e. vertebra center, but
should not only contain one voxel. A voxel can then be classi�ed as
vertebra center if its intensity is higher than every other intensity in
the window. Unfortunately, the predictions of the network will not
be perfect which will cause other arti�cial maxima, especially where
intensities are close to zero, to be found by this method. To work
around this problem, a threshold can be introduced that controls
the minimal intensity for a voxel to be classi�ed as a real maximum.
Assuming the found maxima correspond to the true centers of the

vertebral bodies, the next step is now to map the points into a com-
mon reference system (see Figure 3.3). This can be done by applying
a similarity transform (being able to rotate, scale and translate the
input without re�ections) to each of the center points which trans-
forms them such that the topmost point p will be mapped to the ref-
erence point rt and the lowest point qwill bemapped to the reference
point rl , respectively (for a detailed description of how to compose
this transformation, see Appendix A.1).
To map all centers into the reference system, the so-found trans-

formation must be applied to all centers.
The output should be the curve of the spine and not only the cen-

ters of the vertebrae which is why some interpolation is needed for
the values in between the center points. In this case, a simple cubic
spline interpolation is used to achieve this[44].

3.2 strategy 2

The �rst step of this method is to extract the centerline of the spine
directly from the MR record by using a CNN. The ground truths for train-
ing this network can be created by using the given centers of the
vertebral bodies. Therefore, a cubic spline is �t through the centers.
Again, as mentioned in Section 3.1, a CNN is more e�cient in learning
a segmentation than a regression. For this reason, the cubic spline
is embedded inside a matrix of the size of the input Magnetic Res-
onance Image (MRI), setting all values along the centerline, i.e. the
spline from the uppermost vertebra center to lowest center, to one
and everything else to zero. Yet again, a Gaussian kernel is used to
smoothen the values of the matrix, since the values are still very
sparsely distributed. This smoothed centerline will be called ’center
ridge’ or ’ridge map’.
Parallel to this CNN extracting the center ridge, another CNN is

trained to learn the center of the uppermost and the lowest vertebra.
The ground truths for this CNN can be created by using the centers of
the vertebrae as well. In this case, the output of the CNN is going to
have two channels, one for the upper vertebra center and another
one for the lower one. To create these channels, the list of all centers
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Figure 3.5: Outline of Strategy 2. Blue: outputs after the di�erent steps. Or-
ange: substeps. Circular icon: trainable (convolutional) neural
network.

of the MR record is sorted by the y-value, i.e. the height. For the �rst
channel, the �rst center of the list is used and the last center of the
list is used for the second channel, respectively. This assumes that
there are no two centers in the list having the same y-value which
should be given by the nature of the spine. Now, for each channel, a
zero-matrix with the size of the input MRI is created, only being one
at the position of the respective center. To adopt the idea of center
point extraction in Section 3.1, a Gaussian kernel is applied to each
channel to help learning the segmentation. It would also be possi-
ble to combine both centers in one channel, as it was done with all
centers in the previous strategy. However, it would be necessary to
search for local maxima which can lead to wrong points (as pointed
out in the previous strategy). The bene�t of using two separate chan-
nels for each of the centers is that only one global maximum needs
to be found per channel, which is much less complex than a local
search and yet should lead to precise coordinates. Furthermore, the
uppermost and the lowest vertebrae are used as reference points be-
cause they have a characteristic appearance that makes it easier and
robust to learn by a CNN.
The next step is to extract the centerline. Therefore, the coordi-

nates of the maximum of the x-z-plane (i.e. an axial slice) at every
height of the center ridge is searched. Since the coordinates of the
uppermost and the lowest vertebra center are known from the sec-
ond CNN, it is only necessary to extract the maxima between these
two points. All other points above and below the centerline will be
discarded, anyway. It can be possible for the extracted centerline to
not be very smooth since the maxima at every height were extracted
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Figure 3.6: Z-Projections on midsagittal slice of intermediate outputs of
Strategy 2. F.l.t.r.: ridge map, centerline (red) + upper/lower
center(green), smoothed centerline + upper/lower center, norm
spine

independently from each other. For this reason, it seems suitable to
apply a Gaussian �lter to the extracted points. This one should have
a small kernel because otherwise the curvature of the spine could
be distorted.
Of course, it would be possible to use more robust algorithms for

extracting the centerline from the center ridge like applying a short-
est path algorithm with an appropriate cost function. This would
probably be more robust than �nding the maximum at every height
level because it considers previous and following height levels, but
as can be seen later in Chapter 4, this simple method is su�ciently
robust and very fast.
At this point, the coordinates of the extracted spine are still in the

original system. This is why they need to be projected into the refer-
ence system which can be done by applying the similarity transfor-
mation from Section 3.1 to all extracted points where the parameters
for calculating the transformation can be taken from the output of
the second CNN, i.e. the coordinates of the uppermost and the lowest
vertebra center.
The last step is to interpolate missing values of the spine in the ref-

erence system which can occur due to the similarity transformation
of the points from the original system. Therefore and once again, a
cubic spline is �t through the current points of the spine and at every
height, an interpolated value can now be obtained.
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Figure 3.7: Outline of Strategy 3. Blue: outputs after the di�erent steps. Or-
ange: substeps. Circular icon: trainable (convolutional) neural
network.

3.3 strategy 3

This strategy is very similar to the preceding one in the �rst steps
but takes another approach of extracting the spine in the reference
system.
Such like in Strategy 2, the input MRI is �rst fed into a CNN which

outputs the center ridge. A second CNN which extracts the center of
the uppermost and the lowest vertebral body is used as well.
This is the point where the strategies start to di�er. Instead of ex-

tracting the centerline from the center ridge, a similarity transforma-
tion is applied to the center ridge that transfers the ridge into the
reference system. The parameters of this transformation can be ob-
tained in the same way as it was presented in Section 3.1 but it is
necessary to invert the so-created matrix since in this case, the coor-
dinate system is transformed instead of single points1. A third CNN is
trained with these normalized center ridges as input and will output
a three-dimensional (normalized) direction vector at every height.
Each of these direction vectors points down along the normalized
spine. Even if this is a regression task, one can assume that this can
work well because the direction vectors are similar to gradients, i.e.
vectors of partial derivatives, and it is easy for CNNs to train a �lter
that can compute gradients based on applying a convolution with an
appropriate kernel (the simplest kernels being the Prewitt or Sobel
operator[34, 46]).

1 Instead of calculating the inverse matrix, it is more e�cient to swap p with rt and q
with rl and use this matrix directly.
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The �nal step is now to integrate the direction vectors to retrieve
the true positions. This consists of the following substeps:

1. Forward-Integration: Let di be the normalized direction vector
at height i. di,y denotes the y-component of di. The true position
ti at height i can then be computed using the recursive formula

ti+1 = ti +
1

di,y
· di , 1 ≤ i < k

t1 = rt.

2. Backward-Integration: The following recursive formula results
in the same points ti for a perfect estimation of normalized
direction vectors di:

ti = ti+1 −
1

di,y
· di , 1 ≤ i < k

tk = rl .

3. Let t f
i denote the points from the forward- and tb

i the points
from the backward-integration. Using a perfect estimation of
normalized direction vectors, it holds true that t f

1 = tb
1 = rt and

t f
k = tb

k = rl for both the forward- and backward-integration.
Since there will be small errors on the estimations due to the
prediction of the CNN, it is likely to happen that t f

k 6= rl and tb
1 6=

rt. Anyway, it still holds that t f
1 = rt and tb

k = rl . To combine this
and to assure both t1 = rt and tk = rl for both interpolations,
it is possible to interpolate the values linearly. Then the �nal
estimation of the points will be:

ti =
k− i
k− 1

· t f
i +

i− 1
k− 1

· tb
i , 1 ≤ i ≤ k.

3.4 strategy 4

The last strategy that is going to be tested is a rather direct method
of extracting the normalized spine in the reference system.
Once again, a CNN is trained with the MR records as input. Unlike

the previous strategies, this CNN will not output an intermediate re-
sult like the center ridge but at every height the coordinates of the
centerline, i.e. a regression problem. Therefore, it is certainly impor-
tant to create the centerline, �rst. This can be done like in the previ-
ous strategies by �tting a cubic spline to the given center points of
the vertebral bodies. Since it should be easier to train the network
such that it outputs values around zero (no linear bias and no addi-
tional scaling need to be learned), the coordinates of the points on
the centerline are normalized to be in the interval [−1, 1]. This needs
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Figure 3.8: Outline of Strategy 4. Blue: outputs after the di�erent steps. Or-
ange: substeps. Circular icon: trainable (convolutional) neural
network.

to be done for both the width and the depth coordinate which re-
sults in the mappings [1, width] 7→ [−1, 1] and [1, height] 7→ [−1, 1].
Of course, it is necessary to set some arti�cial values at height levels
where there is no centerline. Some strategies to set these points are:

1. Set the coordinates to zero, i.e. the center of the axial slices.

2. Set the coordinates above the centerline to the coordinates of
the uppermost point of the centerline and the coordinates be-
low it to the coordinates of the lowest point, respectively.

3. Set the coordinates to values outside the de�ned interval of
[−1, 1].

At �rst glance, it seems unnecessary to specify these strategies be-
cause values above and below the centerline will not be needed for
the normalized spine, anyway. Nevertheless, setting these points to
certain coordinates can drastically impair the training process and
thus deteriorate the predicted coordinates of the actual centerline.
After the coordinates of the points on the centerline have been

extracted using the CNN, it is necessary to reverse the scaling/trans-
lation of the width and depth dimensions such that the values of
the coordinates will be in [1, width] and [1, depth] again. It would be
possible to not reverse this transformation but then the output of
this strategy would be di�erent from the outputs of the other three
strategies.
The last step is to transform the extracted centerline into the refer-

ence system by applying the similarity transform from Section 3.1 to
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Figure 3.9: Visualization of strategies to set points outside the spine for
Strategy 4. Left: zero. Center: continue upper/lower points. Right:
outside [−1, 1] (yellow border delimits the image area; notice the
white lines left of the area)

each of the points on the centerline. Therefore, it is necessary to de-
termine the uppermost and the lowest point of the centerline which
can be done by predicting the center points of the uppermost and
lowest vertebra using the CNN proposed in Section 3.2. Like in the
previous strategies, it is important to interpolate the missing values
after the transformation by using a cubic spline.



4EXPER IMENTS AND EVALUAT ION

The methods proposed in Chapter 3 need to be tested and evaluated
to verify their quality. In this chapter, several tests on the di�erent
steps of the method are carried out and discussed in terms of the
applicability to the problem.

4.1 datasets

4.1.1 SHIP Study

The data that the proposed method is tested on has been cre-
ated during the Study of Health in Pomerania (SHIP)[49] which is
a population-based epidemiological study carried out in the north-
eastern part of Germany (see Figure 4.1) on several thousand subjects
since 1997. Its goal is to estimate the prevalence of di�erent diseases
and to �nd connections between simultaneous occurrences of mul-
tiple diseases. The di�erent datasets built up in the study are:

• SHIP-0: data from patients recorded from 1997 to 2001

• SHIP-1: 5-year follow-up examination of patients from SHIP-0
between 2002 and 2006

• SHIP-2: 11-year follow-up examination of patients from SHIP-0
between 2008 and 2012

• SHIP-Trend-0: new cohort recorded from 2008 to 2012

• SHIP-3: 17-year follow-up examination of patients from SHIP-0
between 2014 and 2016

Figure 4.1: Region of SHIP Study in Germany
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Figure 4.2: General statistics of SHIP-Study: distribution of age (top), weight
(bottom left) and sex (bottom right)

• SHIP-Trend-1: follow-up examination of patients from SHIP-
Trend-0 since 2016

The data gathered in each of the datasets consists not only of inter-
views about the health of the patients (containing questions about
many di�erent diseases like diabetes or asthma) and laboratory data
(information about DNA, blood cell count, calcium, magnesium and
manymore) but alsomedical examinations reaching fromblood pres-
sure measurements, ultrasound records of the liver and dental ex-
aminations to dermatological examinations, sleep monitoring and
whole-body MRI.
To preferably get a uniform distribution of the population, a strat-

i�cation based on region, age and sex has been performed for the
choice of subjects participating in the study. From Figure 4.2, the strat-
i�cation can be veri�ed for sex with a ratio of 1639 female to 1571male
subjects. A strati�cation of age can also be seen for SHIP-2 from 35
years to 64 years (binned in ranges of �ve years) with each approx-
imately 125 subjects. There do exist people with ages outside this
range in the SHIP-2 study but they are not strati�ed. In contrast to
that, the age of the subjects in SHIP-Trend-0 seems to be a Gaussian
distribution with the mean value at the age range from 50 years to 54
years. As can be seen in the bottom left graph of Figure 4.2, the strat-
i�cation was not applied to weight which again results in a rather
Gaussian distributed random variable with its maximum at 75 kg to
79 kg (the labels in the graph show the lower value of theweight range
binned in 5 kg steps).
There is one more dataset called ’SHIP-Pretest’ which was con-

ducted on a small number of volunteers that are not contained in
any of the other datasets. This served to detect problems in the pro-
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Figure 4.3: General statistics of SHIP-Pretest: distribution of age (top),
weight (bottom left) and sex (bottom right)

cess of gathering the data before the actual study. As can be seen in
Figure 4.3, there has not been applied strati�cation to any of the fea-
tures age, weight or sex. Nevertheless, the sex seems to be balanced
with a ratio of 56 female to 47 male subjects and even the age distri-
bution seems to be rather uniform between the ages 25 and 59 (again
binned into intervals of 5 years) with approximately 10 subjects each.
For the weights, there does not seem to be a simple distribution but
it can be assumed to be a Gaussian-distributed random variable sim-
ilar to the weight distribution in the two big datasets before. Even if
none of the three features seems to be sampled from a uniform dis-
tribution, they show a great variance of values which will later be
bene�cial for training the neural networks.
In this thesis, only the MR records of the sets ’SHIP-Pretest’ (con-

taining 103 patients), ’SHIP-Trend-0’ (containing 2072 patients) and
’SHIP-2’ (containing 1138 patients) will be used where ’SHIP-Pretest’
will be used for training the networks and the other two datasets will
be used for computing the statistics. It was not possible to use scans
from ’SHIP-0’ or ’SHIP-1’ because the imaging procedure �rst started
in ’SHIP-2’.
Each subject was scanned using a 1.5 T MR Imager (Magnetom

Avanto; Siemens Medical Systems, Erlangen, Germany) in the supine
position where phased-array surface coils were situated on the head,
neck, abdomen, pelvis and the lower extremities, and the spinal coil
was placed inside the patient table. These scans resulted in both T1-
weighted and T2-weighted records per patient. Each sagittal slice has
a �eld of view of approximately 50 cm×50 cm with a pixel spacing of
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Figure 4.4: Midsagittal T1-weighted MR slice unprocessed (left) and pro-
cessed (right)

1.116mm×1.116mm. The resolution along the sagittal axis is lower
with a spacing between the slices of 4.4mm resulting in a thickness
of around 7 cm to 8 cm for the whole record. Since the �eld of view of
the MRI was quadratic, it was not possible to record the whole body
in one shot. Rather, the area used in this thesis, containing the spine,
was visible in two consecutive shots which had to be combined (see
Figure 4.4). In these combined records, markers for alignment were
contained as well. For the reconstruction of the whole body, these
markers had to be removed at �rst and were instead �lled up with
interpolations of the missing values. This had to be done for both
the T1-weighted and the T2-weighted records.

4.1.2 Preprocessing and Data Augmentation

As Io�e and Szegedy[19] found out, it is useful, i.e. enables a faster
and more robust learning, for training neural networks to normal-
ize the input data, i.e. subtracting its mean and dividing by its stan-
dard deviation. This process can be done inside the network on mini-
batches of inputs on the activations of arbitrary (preferably all) lay-
ers, which allows to remove the (trainable) bias vectors of the convo-
lutional or dense layers, or also (as it was done in this case) on each
input MR record independently.
Still, the dimensions of the so-created records could di�er by some

voxels which wouldmake the use in neural networks impossible with-
out further processing. For this reason, the maximal values for each
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dimension of the dataset were found and each normalized record
was embedded in a matrix of the found maximal dimensions. The
rest of the matrix was �lled up with zeros (i.e. the mean value). Since
the resolution of the provided MR records was much higher in the
sagittal plane than along the sagittal axis and to accelerate training,
the dimensions of the sagittal plane were halved resulting in a �nal
shape of 240× 425× 17 of the network input matrix.
It is also helpful to create additional arti�cial data from the exist-

ing data by applying transformations like random�ippings, rotations,
scalings and translations as proposed by Ciresan et al.[8] since the
number of possible input records from the training set of 103 patients
is very small. In this case and only during training, the matrices could
be �ipped along the sagittal axis (left-right �ip) or along the transver-
sal axis (up-down �ip) and they could be translated along the coronal
axis (front-back translation) or the transversal axis (up-down trans-
lation). Each of these four transformations could take place with a
probability of 50%. The values for the translations were found by the
following procedure: Since it should be helpful for training to have
a wide variety of samples, the translations should be maximal in ex-
treme cases, i.e. it is only necessary to keep the centers of the verte-
bral bodies inside the boundaries of the matrix. To achieve this, the
minimal and maximal coordinates of all spine centers of all training
subjects were found and random values for the front-back/up-down
translation were computed for every augmented sample using these
minimal and maximal coordinates such that the vertebrae centers
would never leave the matrix.

4.1.3 Ground Truth Creation

Since neural networks are trained iteratively by backpropagation and
thus are one of the supervisedmachine learning algorithms, it is nec-
essary to create a set of outputs for the given inputs for training. It is
also necessary to have data representing the desired outputs of the
method to be able to validate the accuracy and correctness. This data
is called ground truth. For the purpose of this thesis, it is necessary
to know the centers of the vertebrae to be able to estimate the spine
curvature. The SHIP-Study does not include any information about
the spine or the vertebrae which is why the centers of the vertebral
bodies had to be extracted manually. In this case, only the vertebrae
from C1 to S1 have been extracted since these represent the biggest
part of the spine, are well-visible in the records and look very simi-
lar to each other (opposing to e.g. S2-S5). Because the resolution of
the original MR images along the sagittal axis is approximately four
times lower than in-plane, it would often have been the case that the
positioning of the center points along the sagittal axis would have
been too coarse (even visually). For this reason, the resolution was
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Figure 4.5: Aligned (top) and misaligned (bottom) T1- and T2-weighted
records. Red channel: T1, green channel: T2

increased arti�cially during ground truth creation by inserting three
slices between two consecutive slices in the record resulting in a new
sagittal resolution of 65 instead of 17 where

RH
i = RL

j , j = bi/4c, i ∈ [0, 64], j ∈ [0, 16]

for the high resolution record RH and the low resolution record RL.
Using this magni�cation, it is not only possible to achieve sub-voxel
precision but also obtaining a record whose in-plane sagittal pixel
spacing is almost equal to the spacing between the slices. It is im-
portant to mention that the centers of the vertebrae have been cre-
ated using only the T1-weighted records. This is because in some
cases, the T1-weighted MR record and the T2-weighted record were
not aligned properly (see Figure 4.5) or had slightly di�erent resolu-
tions which would have distorted the coordinates of the extracted
centers. Using the so-obtained center points of the vertebrae, it is
possible to create the desired outputs of the networks to carry out
the training process.

4.2 evaluation of the strategies

In this section, the implementation of the di�erent strategies pro-
posed in Chapter 3 is described. After that, the strategies are eval-
uated and their applicability to other datasets (in this case ’SHIP-2’
and ’SHIP-Trend-0’) is discussed.
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4.2.1 Strategy 1

Brie�y explained, this strategy takes an MR record as input and pre-
dicts the center map from one CNN and the uppermost and lowest
vertebra center from a second CNN. The center points are extracted
from the center map by a local maxima search and they are trans-
formed into the reference system by using the output of the second
CNN. Finally, a cubic spline is �t through the transformed centers.
The only free parameters of this strategy are the two CNNs and the

choice of the reference system. The system is, like for all strategies,
set such that the center of the uppermost vertebra is at (120, 0, 32)
and the lowest one at (120, 424, 32). These values could be set ar-
bitrarily but like this, the extracted spines will only be transformed
slightly and a discretization of the interpolated values will still be
very accurate. As the transformation changes the spacings of the vox-
els, the units of the reference system will be called rpx (for ’reference
pixel’).
As for the networks, they need to ful�ll a (fuzzy) segmentation task.

In recent years, one architecture or adaptations of this architecture
are the state of the art in medical image analysis and outperform
all previous methods[11, 25, 26]. This architecture is called U-Net and
was proposed by Ronneberger et al.[40] in 2015. It is a kind of auto
encoder network, i.e. consists of an encoding path, which consists of
alternating convolutional- and pooling layers, and a decoding path,
that consists of alternating upsampling- and convolutional layers.
What makes the U-Net so powerful are connections between the en-
coding and decoding path at every subsampled layer which means
that small details from early layers can be used in later layers. For
these reasons, the networks used for this strategy are adaptations
of the U-Net as well. Their structure can be taken from Figure 4.6.
As can be seen, the architectures of the two CNNs are very similar

and only di�er by the parameters of individual layers. The encoding
path comprises three-dimensional convolutions with a kernel size
(KS) of 3× 3× 3 and a number of �lters of 16, 32, 64 and 128 for the
�rst CNN and 8, 8, 16 and 16 for the second one. Each convolutional
layer is followed by a batch normalization layer, a nonlinear relu ac-
tivation and a max pooling layer on certain axes (except for the last
convolutional layer of the encoding path).
The decoding path consists of alternating upsampling layers on

certain axes followed by a concatenation with the results of the en-
coding path at the same sampling level which are then followed by
convolutional layers, again with a KS of 3 × 3 × 3, with 64, 32 and
16 �lters for the �rst and 16, 8 and 8 �lters for the second network
(again with batch normalization layers and relu activations). The last
layer carries out a convolution with a KS of 1× 1× 1 and one �lter
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Figure 4.6: CNNs of Strategy 1. Top: U-Net extracting center map. Bottom: U-
Net extracting upper and lower vertebra center. Blue: convolu-
tion+relu, red: max pooling, green: upsampling, gray circle: con-
catenation+zero padding, turquoise: convolution+sigmoid. Val-
ues in brackets: output shape of the respective layer
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Figure 4.7: Losses of Strategy 1. Top: Center map extraction net. Bottom: Up-
permost/lowest vertebra extraction net. Losses using SGD (learn-
ing rates: 0.01, 0.1, 1.0) and Adam

for the �rst and two �lters for the second CNN which output the �nal
predictions.
For training the two networks, the Fuzzy Dice Loss (FDL) function

was used as objective function to be minimized. It is de�ned as

FDL = 1− k + ∑i |gi · pi|
k + ∑i g2

i + ∑i p2
i

,

where gi and pi are the intensities of the ground truth and the pre-
diction, respectively, at position i, and k is a smoothing constant[30].
In all cases, a batch size of 2 was used for training and 1 for val-

idation. The networks were trained as many epochs as were neces-
sary for them to converge. In this case, a network converged when it
trained for at least 200 epochs and reached an FDL below 0.2.
The optimizer, that is used to train the networks, is SGD[38] with a

learning rate of 0.01, using Nesterov’s Accelerated Gradient[31] and a
momentum term[35] of 0.7. These values were found by a coarse grid
search of the parameters to result in smooth learning curves and to
simultaneously achieve a small value of the loss function.
Figure 4.7 shows the graphs of the validation loss of several param-

eter con�gurations. The �rst graph shows the FDL of the network that
learns the center map. One can see that the loss decreases very fast
in the �rst ten epochs to approximately 10%. In the next 150 epochs,
it falls much slower to aminimal value of 6%. As one can see, increas-
ing the learning rate does not signi�cantly change the minimum of
the loss curves but makes them rather uneven. Even changing the
optimizer from SGD to Adam (using its default parameters) does not
have any impact on the losses, at least for this network.
The second graph shows the FDL of the network that learns the

uppermost and lowest vertebra center with di�erent parameter con-
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Figure 4.8: Predicted centers of Strategy 1. Left: Correct prediction. Center:
Too many predictions (see cervical area). Right: Too few predic-
tions (see dark thoracic area)

�gurations. As can be seen, the con�guration with the default pa-
rameters described in the previous paragraph needs 400 epochs be-
fore it falls from 98% to 20% in approx. 15 epochs. If the learning
rate is increased to 0.1 or even 1, the loss decreases much faster, i.e.
reaches 20% after 120 or 70 epochs, respectively. On the other hand,
the minimal values of the loss get larger the more the learning rate
is increased: the minima of the learning rates 0.01, 0.1 and 1 are 8%,
8% and 9%, respectively. This means that an optimal learning strat-
egy must be a tradeo� between speed and accuracy, at least for this
network. This tradeo� does not only depend on the learning rate of
SGD but on the optimizer, too. Comparing all graphs of SGD with the
one that used Adam, one can see that SGD is slower but can achieve
slightly better losses than Adam which is why SGD was used for fur-
ther tests.
In Figure 4.8, three examples of the extracted centers from the pre-

dicted center maps can be seen, embedded in a sagittal CPR of the
input MRI. The left one shows an accurate prediction whereas the cen-
tral one shows an erroneous one with 26 detected centers and the
right one shows an erroneous one with 22 detected centers. As it
turns out, if 26 centers are detected, then the two additional cen-
ters are either situated in the cervical area where the vertebrae look
similar to intervertebral disks due to the low resolution, or in the
thoracic region where the original upper and lower record are con-
nected and the illumination is bad, or inside S1 whose size is bigger
compared to the other vertebrae and thus the window of the local
minima search is probably too small. However, this only occurs in
2.5% of all cases on the datasets ’SHIP-2’ and ’SHIP-Trend-0’. In case
of only 22 detected centers, the problem always lies in the bad illumi-
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Figure 4.9: Absolute error of Strategy 1. Left: Mean absolute error per height
level for x (blue) and z coordinate (red). Right: Standard deviation
of errors per height level for x (blue) and z coordinate (red).

nation between the upper and lower record and occurs in even less
cases, i.e. 0.4%, on the two big datasets. If the method outputs 24
centers, then they are correct in all cases. Regarding the other two
cases, i.e. 23 and 25 predicted centers, 20% and 60%, respectively,
miss at least one center because of illumination issues or contain
at least one center too much, which makes 1.2% and 10.6% of the
whole dataset. All in all, the probability that the method does not
output the correct number of vertebra centers is 14.7%.
Nevertheless, it is not too important to gather the correct number

of centers but rather a cubic spline from these centers whose error
to the cubic spline of the real centers is small. This was tested and is
depicted in Figure 4.9. What can be seen is the mean absolute error
(MAE) and the standard deviation (STD) at every height level between
the spline interpolated with the ground truth centers and the cen-
ters predicted by this strategy for anteroposterior (x) and lateral (z)
coordinates. To make things shorter, these values come from the ref-
erence system, i.e. the �nal output of this strategy. One can see that
the MAE of the x values is never greater than 1.5 rpx (approx. 3.3mm)
whereas the error of z values is at least 1.5 rpx (approx. 1.65mm) and
at most 3 rpx (approx. 3.3mm). This can probably be explained by the
(originally) lower resolution along the sagittal axis. The results are
similar for the STD yet often up to 0.5 rpx less than the correspond-
ing MAE for both x and z values. This shows that the error is relatively
constant throughout the datasets.
The second network, i.e. for predicting the center of the uppermost

and the lowest vertebra, was also tested and the results are shown in
Figure 4.10. The boxplot shows that it seems to be easier for the net-
work to predict the position of the uppermost vertebra center oppos-
ing to the lowest one: The median for the upper center is at 1.22 rpx
compared to 2.1 rpx for the lower one. Even if the �rst and the third
quartile of the two centers are rather close to each other, the max-
imal error of the lower center is 5.24 rpx compared to only 4.06 rpx
for the upper one. This means that the distance between the calcu-
lated and the true center coordinate is between 1 rpx and 2 rpx to
2.5 rpx in most cases but occasionally, the calculation of the lower
center can di�er from the true one quite a bit. In the binned distribu-
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Figure 4.10: Accuracy of Network 2 in Strategy 1. Left: Boxplot of MAE of up-
permost and lowest vertebra center. Right: Binned distribution
of MAE of the respective centers.

tion, one can see an interesting deviation from an assumed normal
distribution at bin 2 for the lower center which contains less values
than the previous and the next bin. One explanation for this could
be the choice of bin sizes or the fact that only discrete positions can
be output.

4.2.2 Strategy 2

This method is similar to Strategy 1 but the �rst network does not
predict a center map but a ridge map of which the ridge is extracted,
normalized and smoothed.
Since the prediction of the ridge map is a (fuzzy) segmentation

task as well, a U-Net-like architecture is chosen such like in Strategy
1 (see Figure 4.6). In fact, the exact same architecture, i.e. with the
same layers and the same �lter properties, is used but trained such
that it outputs the ridge maps from the MRI. The loss curves are very
similar to those of the network in the previous method, which is why
they are not shown here.
The second network, i.e. for extracting the uppermost and the low-

est center of all vertebrae, is the same as in the previous method
as well and was not trained again, so even the same weights have
been used for testing this strategy. This also means that the same
properties of this network still hold.
After the maxima of the ridge map were extracted at every height

level and the so-found ridge positions have been transformed to the
reference system, it is useful to smooth the points because of the
reasons named in Section 3.2. This adds one more free parameter to
this strategy, i.e. the size of the Gaussian �lter kernel. In Figure 4.11,
the absolute errors between the calculated and the true normalized
spine can be seen for three di�erent smoothing KSs. The left graph
shows the error of anteroposterior (x) values whereas the right one
shows the error of lateral (z) values. It can be seen that the error is
less than 2 rpx at almost all height levels for the x coordinate. Only
at the last 14 levels (in the sacral region), the error exceeds the error
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Figure 4.11: Accuracy of Strategy 2. Left: Absolute error of x values for di�er-
ent kernel sizes (KS). Right: Absolute error of z values for di�er-
ent KSs. Blue: KS=3. Red: KS=5. Yellow: KS=10.

of 2 rpx and ends at 8 rpx, 9 rpx and 12 rpx for KSs of 3 rpx, 5 rpx and
10 rpx, respectively (which cannot be seen on the graph). For the z
values, the errors are mostly between 2 rpx and 3 rpx which can be
explained by the low resolution along the sagittal axis and the arti-
�cial magni�cation described in Section 4.1.3. Nevertheless, even if
the sagittal axis was enlarged by a factor of 4, the error is only two to
three times as large as along the coronal axis. It is also interesting to
see that the error does not get much larger at the last height levels,
which means that it it easier to predict the lateral curvature (possibly
because it is rather straight, normally). The values of the standard de-
viation are not shown here but are very similar to those of the MAE
(see Appendix A.1). Concerning the di�erent KSs, it can be stated that
the error gets larger the larger the kernel gets, which proves that the
assumption made in Section 3.2 holds true. Regarding the MAE, its
value for the x errors is minimal for a KS of 3 (i.e. 1.20 rpx compared
to 1.22 rpx and 1.45 rpx for KS = 5 and KS = 10, respectively) whereas its
value for the z errors is minimal for a KS of 5 (i.e. 2.48 rpx compared
to 2.49 rpx and 2.52 rpx for KS = 3 and KS = 5, respectively). Since KS = 3
and KS = 5 produce similar errors but KS = 5 is visually more pleasant
and more natural, all further tests will use KS = 5.

4.2.3 Strategy 3

In this strategy, the ridge map extracted by the same network as in
the previous strategy is transformed into the reference system us-
ing the second network from the previous strategy and a third CNN
estimates direction vectors along the ridge (i.e. the spine) at every
height level which are �nally integrated to get the estimated spine
positions.
The network for estimating the direction vectors is the only one,

described in this thesis, that does not have an architecture similar
to a U-Net but rather a straightforward CNN using only alternating
convolutional layers and poolings (see Figure 4.12). After the activa-
tion of every convolutional layer (except for the last one), a batch
normalization is carried out. As soon as a dimension reaches 1 after a
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Figure 4.12: CNN for direction vector extraction. Blue: convolution+relu, red:
max pooling, turquoise: convolution+linear activation. Values in
brackets: output shape of the respective layer
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Figure 4.13: Absolute error of Strategy 3. Left: Mean absolute error per height
level for x (blue) and z coordinate (red). Right: Standard devia-
tion of errors per height level for x (blue) and z coordinate (red).

pooling, thematrix is reshaped to have one dimension less. That way,
all further convolutional layers can be lower-dimensional and thus
less parameters need to be learned, which enables a faster training
process.
In Figure 4.13, the absolute errors of the calculated output from

the true norm spine can be seen as well as their standard deviation
for x and z values along the y axis. Di�erent from all other proposed
methods, the absolute error and the standard deviation reach zero
at certain height levels, namely at the start and at the end. This is
obvious in this case because of the way this strategy calculates the
norm spine: Since the coordinates are interpolated integrals from
direction vectors, the start and end must always be correct. This is
why it ismore important to look at the values in between. One can see
that both x and z errors increase to 2.5 rpx. The z error increases even
more to 3 rpx until it reaches a short peak of 3.8 rpx at height level
302 (i.e. in the lower thoracic region). This peak could be explained
by the strong curvature of the spine in this region and the relatively
wide shape of the vertebral body at that position. During the last
20 height levels (i.e. the sacral region), the error decreases very fast
until it reaches zero.
The standard deviation looks very similar. It also starts and ends

in zero and has a peak in the z values in the transition zone between
the thoracic and lumbar spine (at height levels around 300). Never-
theless, all values are approximately 0.5 rpx less than their respective
absolute errors at the same height level.
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4.2.4 Strategy 4

The last strategy directly extracts the coordinates of the points along
the spine using a CNN. Like in most of the previous methods, a sec-
ond CNN is run in parallel which detects the uppermost and the low-
est vertebral body. These are then used to transform the extracted
coordinates of the �rst CNN into the reference system.
As pointed out in Section 3.4, there are several di�erent ways to

handle points above and below the actual spine. Tests showed that
using the method that assigns 0 to the coordinates of these points
works best. After all, the results are still not satisfactory enough to
be used for an estimation of the spine curve as can be seen in Figure
4.14 (left): The positions are very uneven, even if the CNN allows for
smoothing them. Furthermore, the values at the bounds of the actual
spine are estimated very badly and especially uneven. The reason for
this could be that the values after the bounds jump to 0 and an exact
border cannot be determined by the network.
A slight modi�cation of this method has been tested as well: In-

stead of directly extracting the positions using the CNN, the ridgemap
is extracted �rst andmapped to the reference system. The advantage
is that choosing amethod for setting values outside the spine can be
omitted since these do not exist any more. Using calculated ground
truths of the normalized ridge as input for the position detection
CNN still results in rather uneven estimations as in Figure 4.14 (cen-
ter). Since the small kernel that is used in the CNN layers could be
too small to be able to smooth the positions, another version with
kernel sizes of 25 has been tested as well, even if it is not usable well
in a real application due to its slow training. A result can be seen in
Figure 4.14 (right), which shows a rather smooth spine but still has
some irregularities.
Since the results are not even close to the ground truth norm

spines visually, a calculation of errors and their standard deviations
was waved.

4.3 choice of the strategy

Comparing all four strategies, it can be concluded that Strategy 3 and
Strategy 4 produce the largest errors or are not even usable in a real
applications. For these reasons, the focus is on the �rst two strate-
gies.
Comparing the MAEs of them, it can be stated that Strategy 1 pro-

duces errors around 1.0 rpx for x and 0.8 rpx for z whereas Strategy 2
produces errors around 1.0 rpx and 2.5 rpx, respectively. In contrast to
that, concerning the standard deviation, Strategy 1 has values around
2.5 rpx for x and 2.0 rpx for z whereas for Strategy 2, the values are
around 0.8 rpx and 2.0 rpx, respectively. Since Strategy 1 creates a
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Figure 4.14: Results of Strategy 4. Prediction using 0 outside the spine (left).
Prediction using norm ridge as input (center). Prediction using
large kernels (right). For visualization, the z coordinates of the
positions have been omitted and the remaining points have
been drawn onto a zero matrix, after which the matrix was
smoothed (which results in a ridge map).

Figure 4.15: Erroneous result of Strategy 2

wrong number of vertebra centers in 14.7% of all cases and the stan-
dard deviation of errors of Strategy 2 is less, the choice fell on Strat-
egy 2.
It is important to note that there can be cases where the ridge is

not predicted completely correctly by the network in this strategy,
although this only happened in ten cases that all look like the one in
Figure 4.15. This can probably be explained by the bad illumination
in the center of the records.
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In Chapter 3, some strategies for extracting the spine from an MR
image and mapping them into a common reference system were pre-
sented and the best one has been chosen in Chapter 4. In this chapter,
several statistical tests on the so-extracted spines are carried out.

5.1 visualization

For a better and more local interpretation of the results in the nor-
malized coordinate system, the spine is visually divided into three
parts depicting the cervical, thoracic and lumbar part of the nor-
malized spine. Therefore, the two bounds, one between the cervical
and thoracic part and one between the thoracic and the lumbar part,
have to be found. Since the centers of the vertebral bodies exist for
the dataset ’SHIP-Pretest’, it is used for calculating these two bounds.
For the upper one, the following steps are carried out:

1. For each record, the centers corresponding to C7 (the lowest cer-
vical vertebral body) and Th1 (the uppermost thoracic vertebral
body) are found by sorting all centers by their y-coordinate, i.e.
their position along the transversal axis.

2. For each record r, the transformation for the normalization of
the spine is calculated as an a�ne matrix Ar like in Section 3.1
using the coordinates of the centers of C1 and S1, respectively.

3. For each record r, the centers of C7 and Th1 found by Step 1
are transformed into the normalized coordinate system using
matrix Ar from Step 2.

Figure 5.1: Visualization of all norm spines. Top: sagittal projection. Bottom:
coronal projection. White: centerline. Light gray: 1st to 3rd quar-
tile. Dark gray: 5th to 95th percentile. Green: cervical area. Violet:
thoracic area. Yellow: lumbar area.
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Vertebra Mean Std 5th Perc 95th Perc Deviation

C7 78.4 3.1 74.0 84.0 [−4.4, 5.6]

Th1 92.7 3.2 88.5 99.0 [−4.2, 6.3]

Th12 295.0 5.2 290.1 301.3 [−4.9, 6.3]

L1 319.9 5.4 314.2 325.6 [−5.7, 5.7]

Table 5.1: Simple statistical measures of certain normalized vertebra cen-
ters: mean, standard deviation, 5th percentile, 95th percentile,
90% data deviation from mean in rpx

4. The mean of all normalized centers of C7 is calculated as µC7.

5. The mean of all normalized centers of Th1 is calculated as µTh1.

6. Since the border between the cervical and the thoracic region
should be approximately the center between C7 and Th1, the
mean of µC7 and µTh1 is calculated and only the y-coordinate is
taken.

For the lower bound, all of these steps can be carried out likewise,
but C7 is replaced with Th12 and Th1 is replaced with L1.
To check that it is appropriate and meaningful to use the mean of

the normalized centers in Step 4 and Step 5, i.e. to �nd out whether
the deviation from the mean is small, one can calculate the interval
that most of the values are inside of. This can be seen in Figure 5.1
where for each necessary vertebra the mean, the standard deviation,
the 5th percentile, the 95th percentile and the interval of deviation
from the mean is shown. The interval of deviation [a, b] means that
90% of the data is in the interval [µ + a, µ + b] for the mean value µ

where µ + a is the 5th and µ + b is the 95th percentile, respectively.
As one can see, the majority of values does not deviate more than
6.3 rpx from the mean value. It can also be derived that the deviation
gets (a little) larger the lower the position of the vertebral body is. It
is also interesting to see that the mean is not centrally located in the
interval of deviation in most cases. Instead, the distance to the 5th
percentile is less than to the 95th percentile. Since the deviation is at
most 6.3 rpx and the 95th percentile of a vertebra is not greater than
the 5th percentile of the next lower vertebra, it can be concluded that
the mean is a good estimation for the center positions.
Finally, the coordinate of the border between the cervical and the

thoracic region in the normal system is at 0.5 · (78.4 + 92.7) = 85.6
and the one between the thoracic and lumbar region at 0.5 · (295.0 +
319.9) = 307.4. The regions can be seen in Figure 5.1.
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Figure 5.2: Shapiro-Wilk test: p-values at every height level for x (blue) and
z values (red)

5.2 test for normality and modality

The �rst test that is carried out on extracted norm spines is a test on
normality, i.e. whether a random sample is drawn from normal distri-
bution. The intention of this test is to �nd out whether further tests
can be used that assume a normal distribution (like Student’s t-test).
Else, di�erent methods must be used that do not assume normality.
The method used for checking the normality is the Shapiro-Wilk

test[45] in this case. There are other possible methods but this one is
suitable since it supports sample sizes up to 5000 and the datasets
to be tested contain approx. 4000 samples. The null-hypothesis of
this test is that the samples were drawn from a normal distribution.
Since the input of this test can only be one-dimensional data, the
method was carried out for every height level of the norm spine and
for anteroposterior and lateral direction (x and z values) separately.
Figure 5.2 shows the p-values for x and z coordinates at every

height level which describes the probability to draw the samples like
this assuming the samples were drawn from a normal distribution.
Since the maximal p-value is 3.67e−4, it means that it is very un-
likely that the samples were drawn from a normal distribution. In
most cases, especially for the x values, the p-values is even smaller
and does not even reach 5e−5. From this, it can be concluded that
the norm spines are not (or very unlikely) normally distributed.
It is also interesting to know the number of modes of the norm

spines. If it is greater than 1, it could be possible that there are sev-
eral clusters that describe di�erent shapes of the spine. Since the
test for normality failed, the upper limit of one mode cannot be sus-
tained. For this reason, Hartigan’s Dip Test [18] is carried out which as-
sumes the unimodality of the tested samples as its null-hypothesis.
Figure 5.3 shows the results of the Dip Test. In this case, the closer
to 0 the value is, the more likely it is for the samples to be drawn
from a non-unimodal distribution. Setting the common signi�cance
level α = 0.05 would at almost all height levels not allow to reject
the hypothesis of a non-unimodality. Most of the height levels have
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Figure 5.3: Hartigan’s Dip Test: p-values at every height level for x (blue) and
z values (red)

a p-value very close to 1 which indicates very likely that the samples
were drawn from a unimodal distribution.
Summarizing these two tests, the norm spines are not normally

distributed and they also probably do not have more than one mode
on most height levels.

5.3 test on straight coronal spine

It is widely assumed that an ideal spine does not have a lateral de-
viation. Real patients, however, do not have ideal spines and thus, a
small lateral deviation is rather possible. Nevertheless, the hypothe-
sis to be checked is that the mean of all spines in the given datasets
is a straight line (in a coronal view).
Therefore, the wanted test needs to compare the norm spines at

every height with the required expectation value, i.e. the center in the
reference system. A test that is capable of doing so is the Wilcoxon
signed-rank test which checks whether the distribution of the di�er-
ences is symmetric about zero. The results can be seen in Figure 5.4
(top).
One can see that in most cases, the p-value is very close to zero

which means that the hypothesis that the means coincide with the
straight line must be rejected. This shows that the mean coronal
norm spine is not a straight line but rather slightly curved. This can
also be seen visually in Figure 5.1 (bottom).
Another method to show that the mean spine is not completely

straight is by calculating the length of the spines in the coronal view
which should optimally be 424 rpx (corresponding to the length of a
straight line in the reference system from C1 to S1). The distribution
of these lengths is shown in Figure 5.4 (bottom). One can see that
most lengths are between 424 rpx and 429 rpx. The mean of 426 rpx
also con�rms that a typical spine is longer than the optimal value
what can only occur if the spine is not straight.
Finally, one can conclude that the initial hypothesis, that the mean

coronal spine is straight, is not true.
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Figure 5.4: Test on Straight Coronal Spine. Top: p-values of Wilcoxon signed-
rank test comparing the dataset to the expected straight line at
every height level. Bottom: binned histogram of coronal spine
lengths (50 bins with a size of 1 rpx each)

5.4 filtered tests

As previous analyses on the curvature of the spine found out[15, 17],
the shape of the spine is likely to change with age, body size, weight
and other features. For this reason, diagnosing diseases of a patient’s
spine based on the statistics of spines of the whole dataset can be
misleading. E.g., comparing the spine of an old person with the mean
spine of the population will probably show a strong deviation and
thus lead to the diagnosis of a disease like hyperkyphosis although
compared to the mean spine of people at the patient’s age would
only show a mild deviation. This is why the whole set of spines will
be �ltered for certain features in this section such that tests between
di�erent groups of people become possible.

5.4.1 Test on Biological Sex

The feature that ismost constant in the life of a human being is the bi-
ological sex, i.e. male and female. Since men and women do develop
di�erently in anatomy but still not as di�erent as it should concern
the spine, the hypothesis is that the estimated probability density
functions of male and female subjects do not di�er.
To validate this hypothesis, a Kolmogorov-Smirnov (KS) test is car-

ried out between themale and female spines, which assumes all sam-
ples to be drawn from the same distribution. The results can be seen
in Figure 5.5 (bottom) which shows the p-values of the test. In this
case, if the p-value is high, the hypothesis cannot be rejected. One
can see that the values are close to zero for the anteroposterior di-
rection (along the x axis) in most cases except for the transition zone
between the thoracic and lumbar spine (around height level 300). It
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Figure 5.5: Test: Male vs. Female. Top: Sagittal projection of male (red chan-
nel) and female spines (green channel) using 5th, 25th, 75th and
95th percentile and mean. Center: Coronal projection. Bottom: p-
values of KS test at every height level (blue: x coordinates, red: z
coordinates)

is possible to set the common signi�cance level at α = 0.05. All p-
values are below α which shows the signi�cance of this test for the
anteroposterior direction (i.e. the x values). Applying the same α to
the z values only holds true for 71% of the height levels. This is be-
cause the lateral curvature is not as strong as in the sagittal plane
and lets the distributions at some height levels overlap. Neverthe-
less, even for the z values, the test is signi�cant in most cases.
All in all, this shows that male and female spines do di�er which

means that the stated hypothesis is wrong. This can also be seen in
Figure 5.5 (top, center) where di�erences can be seen especially in
the cervical and thoracic area.

5.4.2 Test on Body Size

The body size is another feature that can have an impact on the cur-
vature of the spine. To check for this in�uence, the patients were di-
vided into size bins of 10 cm from 1.3m to 2m. The distribution can be
seen in Figure 5.6 (top). One can see that it is shaped like a normal
distribution with its mean between 1.6m and 1.7m. Comparing the
bins visually (as for the bins 1.5m and 1.8m in Figure 5.6 (above cen-
ter)) already shows a di�erence: The norm spines of large patients
are closer to the center than those of small patients, i.e. large pa-
tients seem to have a straighter spine.
To validate this thesis, a Mann-Whitney-U (MWU) test is performed

on the height bins which can check for the alternatives ’smaller’, ’un-
equal’ and ’greater’. Since picking only two bins for the validation
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Figure 5.6: Test on Body Size. Top: distribution of sizes. Above center: sagit-
tal and coronal projection of norm spines of bin 1.5 (red channel)
and 1.8 (green channel) using 5th, 25th, 75th and 95th percentile
and mean. Center: p-values of MWU test for x values per height
level for the alternatives ’less’ (blue), ’unequal’ (yellow) and
’greater’ (red). Below center: like lower center but for z values.
Bottom: Binned distribution (1 rpx per bin) of sagittal lengths of
norm spines for size<1.7m (blue) and size≥1.7m (red).
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would not be su�cient and a test on all combinations would be too
costly, a critical size was set and the test will compare all norm spines
of sizes below to those of at least that critical value. The mean of the
distribution lies between 1.6m and 1.7m, so it should be sensible to
use 1.7m as the critical value (see Figure A.3 and Section A.3 for a
further justi�cation of this value).
For the anteroposterior direction (x values), one can see that the in-

equality can be assumed in most cases except for the lower thoracic
area. This is the place where the norm spines have a zero-crossing (in
the reference system) and for that reason are superimposed. For all
values in the lumbar region, the alternative that the x values of the
smaller bin are less than those of the larger bin can be assumed as
well, which indicates that the larger spine is straighter in this region.
In the cervical and thoracic region, none of the alternatives ’less’ or
’greater’ can be assumed although visually, the larger bin seems to be
straighter. More directly, comparing the sagittal lengths of the norm
spines of these two sets (see Figure 5.6 (bottom)) visually shows a
distribution of larger spines being shifted towards smaller lengths. A
modi�ed version of the sign test (see Appendix A.3) on the lengths
using the alternative ’greater’ also con�rms this with a p-value of
1.5e−10.
For the z values, a signi�cant statement can only be made in the

lower lumbar region where the alternatives ’unequal’ and ’greater’
can be assumed. In all other regions, the test cannot determine the
order relation between the two bins. In the upper thoracic region, the
test even assumes all three alternatives. One can suspect that this
happens because an assumption of the test could possibly be not
ful�lled: MWU assumes that the distributions are the same but can
be shifted. Testing the bins for equal but shifted distributions would
go too far which is why it is not done here.
Finally, the hypothesis that spines of larger people are straighter

can be accepted visually and (for the x values) statistically.

5.4.3 Test on Age

The age of a patient plays a prominent role for the shape of the spine
as it was shown i.a. by Fon et al.[15] who showed that themean kypho-
sis increases with age. So the hypothesis is that spines of younger
people are straighter than those of older people. Visually (see Fig-
ure 5.7 (top)), it can be determined that the norm spines of younger
patients are indeed straighter than those of older people, at least
in the sagittal plane. Furthermore, one can see that the variance of
younger spines is smaller that that of older spines.
An MWU test cannot be performed on this data because the vari-

ances of the distributions to be compared di�er which violates the
assumption of equal but shifted distributions. Instead, a KS test is
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Figure 5.7: Test on Age. Top: Sagittal and coronal projection of norm spines
of bin 20 (red channel) and 70 (green channel) using 5th, 25th,
75th and 95th percentile and mean. Center: p-values of KS test
for x (blue) and z (red) values per height level. Bottom: Binned
distribution (1 rpx per bin) of sagittal lengths of norm spines for
age<45 years (blue) and age≥45 years (red).
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performed (see Figure 5.7 (bottom)). Like in the previous subsection,
the test is not performed on two single age bins. Rather, all norm
spines smaller and greater than a critical age are combined in two
sets. This value is set to 50, since the weighted mean of the distri-
bution lies between the bins 40 and 50. As previously assumed, the
distributions of the x values di�er in most areas except in the lower
thorax at the in�ection point where the distributions are superim-
posed and in the cervical area where the spines assimilate.
Like in the previous subsection, the lengths of the norm spines of

the two sets can be compared using the sign test. In this case, spines
of younger patients seem to be longer, i.e. straighter, than those of
older patients which can be assumed due to the p-value of 1.4e−21
using the appropriate hypothesis of the sign test.
The results in the coronal plane are not that de�nite. Inmany cases,

the distributions only di�er in their variance but seem to have a very
similar mean. The KS test does not penalize this too hard which leads
to p-values that do not allow to refuse the hypothesis of same dis-
tributions. One has to remember that the tested sets are not uni-
formly distributed but rather biased towards the mean. This way,
norm spines far away from the mean do not in�uence the calcula-
tion as much which could cause the test to be less meaningful.
Still, the test shows signi�cance for the x values and thus con�rms

the hypothesis that younger spines are straighter than older spines.
Moreover, the variance of the shape seems to increase with age.

5.4.4 Test on Weight

Lastly, the in�uence of the weight of the patients on the norm
spines will be tested. As González-Sánchez et al.[17] concluded from
a dataset of 36 individuals, there is a connection between the waist
circumference and the spinal curvature. To check whether this holds
for the SHIP datasets as well, the hypothesis is that the distributions
per height level are di�erent.
The test that seems most suitable to check for this hypothesis is

the KS test. At �rst, the norm spines are split up into binswith aweight
range of 10 kg. Like in the previous subsections, a critical value is set
�rst. Since the weighted mean of the weight distribution is at 80 kg,
the critical value is set to this mean and so all spines with a lower
weight are tested against the rest. The results can be seen in Figure
5.8.
Regarding the anteroposterior direction (x values), the result is

very clear: In all cases, the hypothesis that the samples come from
the same distribution can be rejected on the basis of the p-value and
the common signi�cance level of α = 0.05. For the z values, there are
some regions, i.e. the cervical and the lower lumbar area, where the
hypothesis cannot be rejected. This coincides partly with the results
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Figure 5.8: Test on Weight. Top: Sagittal and coronal projection of norm
spines of bin 50 kg (red channel) and 100 kg (green channel) us-
ing 5th, 25th, 75th and 95th percentile andmean. Center: p-values
of KS test for x (blue) and z (red) values per height level. Bottom:
Binned distribution (1 rpx per bin) of sagittal lengths of norm
spines for weight<75 kg (blue) and size≥75 kg (red).
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of González-Sánchez et al. who additionally found out that one can-
not make a connection between the lateral z values and the waist
circumference. In contrast to that, the KS test shows that the distri-
butions are di�erent in the thoracic region.
These results can also be con�rmed by comparing the bins 50 kg

and 100 kg visually. The sagittal projection shows that spines of
100 kg-patients are closer to zero, i.e. they are straighter. The coro-
nal projection shows that 50 kg-spines seem to be less straight in
the mid-thoracic region but also that the variance of these spines is
higher compared to the 100 kg-spines.
The sign test on the lengths of the norm spines of these two sets

shows that norm spines of light patients are longer, i.e. less straight,
than those of heavier patients with a p-value of 2.4e−5 supporting
this alternative. This can also be seen in the distribution of lengths
in Figure 5.8 (bottom).
All in all, the performed tests support the hypothesis of unequal

distributions and thus shows an in�uence of the weight on the curva-
ture of the spine. Moreover, the sign test shows that heavier patients
have straighter spines than light patients, on average.

5.5 healthy spine curvature

As described in Chapter 1, it is hard to determine a range of Cobb
angles of healthy spines in the sagittal view, i.e. for the classi�cation
of kyphosis. Furthermore, it was shown in Section 5.3 that it is rather
abnormal for a spine to be completely straight in the coronal view.
This leads to the question in what range the curvature of a spine

can be to be classi�ed as normal/healthy. For consistency and com-
parability with other scienti�c articles, the Cobb angles of these
ranges are going to be determined and evaluated statistically.
Since the norm spines are given as a sequence of points by the pro-

posed method, it is simple to calculate the Cobb angle. Therefore,
a so-called angle map (see Figure 5.9), i.e. a two-dimensional sym-
metric square matrix of size (#height levels× #height levels), which,
at position (i, j), contains the angle between the direction vectors
along the norm spine at height level i and j. The Cobb angle can then
be determined by �nding the maximal value on the angle map[55].
Furthermore, the position of this maximum depicts the height levels
between which this angle can be found, which can be helpful for a
later treatment in case of an unhealthy curvature.

5.5.1 Sagittal Cobb Angles

In the following, the ranges of angles will be evaluated per region, i.e.
cervical, thoracic and lumbar area, because the spine is concave, con-
vex and again concave in the respective regions. This will give more
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Figure 5.9: Calculation of the angle map. Left: norm spine with direction vec-
tors along spine d1 and d2 at height levels h1 and h2. Center:
Cobb angle α = arccos(〈d1, d2〉/(‖d1‖‖d2‖)). Right: angle map
with marked Cobb angles of height levels h1 and h2.
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Figure 5.10: Cobb angle statistics in the sagittal view. Solid line: 1st to 3rd
quantile. Dashed line: 5th percentile to 95th percentile. Error
bars for minimum and maximum.

accurate and more local results. The calculations of the Cobb angles
per region are very simple as well, since only the relevant submatri-
ces of the angle map need to be considered for �nding the maxima.
The statistics shown in Figure 5.10 were computed by �rst determin-
ing the three Cobb angles per norm spine and then calculating the
respective percentiles using these angles.
One can observe that the Cobb angles in the cervical and lumbar

region are lower, i.e. between 17◦ and 44◦ or 24◦ and 54◦ for 90% of
the spines, compared to the angles in the thoracic region between
31◦ and 60◦. Examples of the minimal, median and maximal thoracic
Cobb angle in the sagittal plane can be seen in Figure 5.12.
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5.5.2 Coronal Cobb Angles

In the coronal view, it is not only important to calculate the absolute
value of the angles but also to include a direction indicated by the
sign of the angle since the shape in this view is not necessarily either
convex or concave. Therefore, at a position (i, j) in the angle map, if
the direction vector at height level i points left, the angle between i
and j will be positive and else negative. The resulting angle map in
general is not symmetric any more due to the non-symmetric distri-
bution of signs. The statistics on these angles can be seen in Figure
5.11.

Figure 5.11: Cobb angle statistics in the coronal view. Solid line: 1st to 3rd
quantile. Dashed line: 5th percentile to 95th percentile. Error
bars for minimum and maximum.

Here, one can see that the angles in the three regions are always
close to 0◦, which means that in most cases, the spine is rather
straight. For 50% of the spines, the angles in the cervical area are
between -6◦ and 5◦, for the thorax between -6◦ and 9◦ and for the
lumbar region between -7◦ and 5◦. It is also interesting to see that
the medians are not very close to 0◦ but rather -2.5◦, 5.8◦ and -4.1◦ in
the respective areas. This means that it is normal to have a slightly
bent spine which also supports the results of Section 5.3.
Again, examples for the minimal, median and maximal thoracic

Cobb angle in the coronal plane can be taken from Figure 5.13.
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Figure 5.12: Cobb angles in sagittal view. Left column: sagittal CPR of MR
record. Right column: angle map (black: 0◦, white: maximal an-
gle in this map). Top row: minimal Cobb angle. Center row: me-
dian Cobb angle. Bottom row: maximal Cobb angle. Red: center-
line. Yellow: borders between cervical, thoracic and lumbar re-
gion. Blue: points with coordinates of maxima in the angle map.
Green: tangents at blue points. α = β: Cobb angle in degrees.
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Figure 5.13: Cobb angles in coronal view. Left column: coronal CPR of MR
record. Right column: angle map (green: positive angles, red:
negative angles, intensity: absolute value of angles). Top row:
minimal Cobb angle. Center row: median Cobb angle. Bottom
row: maximal Cobb angle. Red: centerline. Yellow: borders be-
tween cervical, thoracic and lumbar region. Blue: points with co-
ordinates of maxima/minima in the angle map. Green: tangents
at blue points. α: Cobb angle in degrees.



6CONCLUS ION

6.1 summary of strategies

In this thesis, four strategies for a fast and su�ciently precise extrac-
tion of the the centerline of the spine fromMR records using CNNswere
proposed. In tests, it turned out that Strategy 2 works best for this
use case, i.e. separately predicting the center of the uppermost/low-
est vertebra and a so-called ridge map of the spine curve using CNNs
and afterwards extracting the centerline and transforming it into the
reference system.
The advantage and disadvantage of this strategy is the full automa-

tion once the weights of the CNNs have been trained. On the one hand,
this leads to a very fast process of extracting the centerline, which
makes this strategy particularly applicable on a dataset of several
thousand records in a very short time. On the other hand, it prevents
the user from in�uencing the method, e.g. if the CNN for predicting
the ridge map produced an output that does not match the spinal
curve in the data (see Figure 4.15).
Depending on the use case, Strategy 1, i.e. extracting a map of

center points of the vertebrae using a CNN and transforming the ex-
tracted centers into the reference system, could achieve even more
accurate results. Tests in Chapter 4 showed that this strategy pro-
duces slightly bigger errors in general but it would be easy to modify
the method to include user interaction for manually re�ning the pre-
dicted centers of the vertebrae. The downside of this is of course the
longer (yet still faster thanmanual) runtime per record since it is nec-
essary to manually classify whether a result needs to be re�ned at
all.
From a scienti�c and statistical perspective, it is feasible to accept

some errors while analyzing big datasets whereas a more in�uence-
able method would be more useful for doctors in everyday clinical
routine on only a small number of records.
All in all, it could be shown in Chapter 4 that the errors of the cho-

sen strategy for the purpose of this thesis are inmost cases only 1 rpx
to 1.5 rpx (i.e. 2.2mm to 3.3mm) for the x values and 2 rpx to 3 rpx (i.e.
2.2mm to 3.3mm) for the z values.

6.2 summary of statistical tests

Statistical tests have been carried out on the extracted norm spines
from two of the SHIP datasets in Chapter 5.
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It could be shown that the spines in the reference system are not
normally distributed per height level but nevertheless seem to have
only one mode. Furthermore, the tests showed that a straight spine
in the coronal view is not the optimum which means that it is not
unhealthy for human beings to have a slightly bent spine, i.e. mild
scoliosis, with a Cobb angle of approximately 6◦. The reason for this
could be due to the handedness of the population (see next section).
After the spines had been �ltered for certain properties, the fol-

lowing results could be found. The distribution of spine shapes of
male and female subjects is not the same in the coronal view. Rather,
spines of female subjects seem to be straighter, visually (see Fig-
ure 5.5). It can be assumed that male spines are bent more because
still, the majority of workers in typically male jobs (like mineworkers,
masons and other jobs based on mainly physical work) is still male
whereas most women work in mentally and rather less physically de-
manding jobs (like jobs in the medical sector, secretary or educator).
The body size also in�uences the shape of the spine: it could be

shown that spines of smaller people are bentmore. Of course, this di-
rectly in�uences each other since a person that stands straight will al-
ways be higher than when he/she bends him/herself, i.e. also bends
his/her spine.
As already stated by Fon et al.[15], it could be con�rmed that the

spine gets bent more the older the subjects become.
Finally, it was shown that the weight of the patients has an in�u-

ence on the shape as well. The tests signi�cantly resulted in the re-
jection of the hypothesis that the distributions are the same per
height level and even further, the sign test on the lengths of the
spines showed that spines of heavier subjects are generally bent
less which seems counterintuitive because one would assume that a
higher mass would pull the spine down more and would thus result
in a spine bent more.
Except for Fon et al.[15], no other article could be found that ana-

lyzes healthy Cobb ranges for scoliosis, kyphosis or lordosis with a
statistically su�cient number of patients, which is why it was done
in Section 5.5. In the sagittal view, normal ranges of Cobb angles are
20◦-30◦, 40◦-50◦ and 30◦-40◦ for cervical, thoracic and lumbar region,
respectively. In the coronal view, the ranges aremore or less the same
for all regions, i.e. -7◦ to 9◦.
To summarize this thesis, the goals set in Chapter 1 are evaluated:

1. Four strategies were presented to extract the curve of the spine
from MR records very fast (i.e. at most 1 s per record) and precise
(i.e. a maximal mean error of 3.3mm).

2. A reference system was introduced which maps all spines onto
each other. Therefore, a similarity transform is carried out on
the extracted spine curves.
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3. Many statistical tests on the whole dataset and on �ltered sub-
sets have been performed and showed interesting and partly
unexpected results.

4. The ranges of Cobb angles for healthy spines were determined
and lie between 40◦ and 50◦ in the sagittal view and -7◦ to 9◦
for the coronal view.

5. Using the angle map presented in Chapter 5, doctors and other
users of this method can �nd out at a glance if the curvature
of the examined spine is unhealthy and if so, in which area the
malformation occurs.

6.3 future work

Even if detailed tests and experiments have been carried out on the
strategies, there are still many spots where they could be modi�ed
and perhaps achieve even more accurate results taking almost the
same time per record. Since only a coarse grid search for �nding the
optimal architecture of the used CNNs was performed, it is well possi-
ble to �nd an even better architecture, e.g. with another number and
kernel size of the single convolutional layers or di�erent activation
functions.
Another point that can largely in�uence the accuracy of the

method is the dataset, since the CNNs need to be trained. For this the-
sis, it was assumed that the dataset ’SHIP-Pretest’ contains enough
diversity and a su�cient number of records for the training process
but it is possible that some larger dataset with evenmore variance in
its data could improve the outputs to be closer to the ground truth,
though this needs the creation of the ground truths at �rst which can
be a huge e�ort on a big dataset.
Since only four strategies have been proposed in this thesis, it

could be that an all di�erent approach (possibly without deep learn-
ing) leads to even better results. Certainly, these methods should
take a shorter time than the methods presented in Chapter 2 but yet
need to be similarly accurate.
Currently, the method has only been tested on MR data. Since the

CNNs are trainable, it could be possible to use this method on another
kind of data (like CT or 3D ultrasound) as well. Of course, this could
entail slightly changing the architecture of the networks but it is well
possible to work on an appropriate dataset.
Not only could the strategies be improved but the results of the

statistical tests need to be examined medically and biologically as
well. For example, one question that arises is why the hypothesis of
a straight coronal spine cannot be statistically con�rmed. A possible
reason could be that the handedness of the subjects has an e�ect on
the spine due to an asymmetric muscle formation. Since themajority
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of people in Germany is right-handed[29], the SHIP dataset cannot
be seen as strati�ed with respect to the handedness so the median
norm spine is shifted towards right-handed subjects. Nevertheless,
this should be investigated in greater detail.
In Section 5.4, the data were �ltered by only one property. Of

course, it is possible that certain properties in�uence each other,
e.g. body size could depend on age (older people are smaller). This
means there could be interaction andmoderator variables. Since this
leads to (n

2) possible pairs for n being the number of properties, these
tests have not been carried out in this thesis. Evenworse, the number
of mutually depending properties does not need to be 2 but could
be any number which drastically increases the number of necessary
tests.
Nevertheless, the tests on healthy Cobb angle ranges using angle

maps can easily be carried out on a �ltered subset which would, e.g.,
showhow the Cobb angles of young people compare to those of older
people.
Finally, the angle map can be used in everyday clinical practice to

support doctors in determining the degree of a Cobb angle and the
region of the spine where it occurs visually and very fast.
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a.1 determining parameters of the transform

The searched similarity transform is composed of several sub trans-
forms that are applied one after another to the points pi, 1 ≤ i ≤
k, i ∈ N (sorted by height) where k is the number of centers (pj

i de-
scribing point pi after applying step j; applying a transform to a point
means in this case applying the transform to the position vector of
this point):

1. Translate the points such that p1
1 is the origin.

2. Scale the points with the scaling factor s1 such that the line
between p2

1 and p2
k has a length of one.

3. Rotate the points using Rodrigues’ rotation formula (resulting
in the three-dimensional matrix R)[39] such that the line be-
tween p3

1 and p3
k has the same slope as the line between rt and

rl .

4. Scale the points with the scaling factor s2 such that the line
between p4

1 and p4
k has the same length as the line between rt

and rb.

5. Translate the points such that p5
1 and rt are equal.

Since all of these transformations are a�ne, it is possible to combine
them in one matrix:

A =

Step 5︷ ︸︸ ︷
1 0 0 rtx

0 1 0 rty

0 0 1 rtz

0 0 0 1

 ·
Step 4︷ ︸︸ ︷

s2 0 0 0

0 s2 0 0

0 0 s2 0

0 0 0 1

 ·
Step 3︷ ︸︸ ︷

0

R 0

0

0 0 0 1



·


s1 0 0 0

0 s1 0 0

0 0 s1 0

0 0 0 1


︸ ︷︷ ︸

Step 2

·


1 0 0 −p1x

0 1 0 −p1y

0 0 1 −p1z

0 0 0 1


︸ ︷︷ ︸

Step 1

,

where R needs to be determined by Rodrigues’ rotation formula as
stated above in Step 3.
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a.2 graphs
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Figure A.1: Accuracy of Strategy 2. Left: Standard deviation of x values for
di�erent kernel sizes (KS). Right: Standard deviation of z values
for di�erent KSs.

a.3 modified sign test

The standard sign test compares associated pairs of observations to
check for the hypothesis for one value of a random pair to be equally
likely larger than the other one.
For the groups of spine lengths, the observations cannot be asso-

ciated using some common feature (like e.g. weight and size of the
same patient) since the only feature is the length of the spine which
is to be tested. Nevertheless, a random association between obser-
vations from one set to an observation of the other set can be tested
(called ’modi�ed sign test’).
To verify that this random association still has the same validity

as with meaningful associations, the same experiment with random
associations will be executed a certain number of times. If the out-
comes (i.e. the p-values) of these repetitions do not di�er much, it
can be assumed that the sign tests also works with random associa-
tions for these experiments.
Since the distribution of length of the norm spines visually has one

mode and seems to be rather normally than uniformly distributed, it
stands to reason to check the modi�ed sign test on samples of nor-
mally distributed random variables (see Figure A.2). One can easily
see that the medians of the p-values for the respective hypotheses
indeed show the expected results. If the means of the two distribu-
tions are at least 0.25 apart, themodi�ed sign test shows signi�cance
(i.e. using a signi�cance level of α = 0.05) for rejecting the hypothesis
with the true alternative in most cases.
Since the test works on normally distributed variables, the next

step is to validate this for the norm spines (see Figure A.3). One can
see that the medians of p-values almost always show identical re-
sults. Nevertheless, the minimal and maximal errors can deviate a
lot from the medians in some cases. One explanation for this can be
the low number of samples in certain sets which do not allow a pre-
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Figure A.2: Modi�ed Sign Test on Normal Distributions: Medians of p-values
after 100 shu�ed repetitions for alternatives ’X>Y’ (blue) and
’X<Y’ (red) of normally distributed variables X and Y with the
same STD of 1 using 500 samples each with error bars for mini-
mum and maximum. The mean of Y is always 0 compared to the
mean of X which is varied from -1 to 1 along the axis of abscissas.
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Figure A.3: Modi�ed Sign Test on Features: Medians of p-values after 100
shu�ed repetitions for alternatives ’X>Y’ (blue) and ’X<Y’ (red)
of set X: smaller than critical value and Y: at least critical value
with error bars for minimum and maximum. Critical value along
axis of abscissas. Top left: Body size (in cm). Top right: Age (in
years). Bottom: Weight (in kg).
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cise outcome. After all, the p-values for the respective hypotheses
only have a small deviation from the median for the critical values
chosen in Section 5.4, i.e. 1.7m for body size, 50 years for age and
80 kg for weight.
Because of this and because rejecting the hypothesis with some

true alternative due to the p-value matches the visual results, it is
possible to use the modi�ed sign test on the lengths of the norm
spines.
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